Tetrahedron Letters, Vol.31, No.43, pp 6223-6226, 1990 Printed in Great Britain

CHLOROIRON(III)-5,10,15,20-TETRAARYLPORPHINATE/N-METHYLIMIDAZOLE CATALYZED OXIDATION OF ANDROST-4-EN-3,17-DIONE BY CUMENE HYDROPEROXIDE

B. Vijayarahavan and S.M.S. Chauhan*

Department of Chemistry, University of Delhi, Delhi-110 007, INDIA

Summary: The oxidation of androst-4-en-3,17-dione with cumene hydroperoxide, catalyzed by chloroiron(III)-5,10,15,20-tetraarylporphinate/N-methylimidazole systems, was studied under different reaction conditions. The chloroiron(III)-5,10,15,20-tetra(2,6-dichlorophenyl)porphinate/N-methylimidazole system in dichloromethane was found to be the most effective system for the aromatization of the A ring of androst-4-en-3,17-dione.

Cytochrome P-450 aromatase is a member of the monoxygenase family of heme enzymes¹. The biotransformation of androgens to estrogens is catalyzed <u>in</u> <u>vivo</u> by microsomal cytochrome P-450 aromatase, utilizing three moles each of NADPH and oxygen². The high-valent iron(IV)-oxo intermediate, formed by the reductive activation of molecular oxygen by cytochrome P-450³, is responsible for the <u>in vivo</u> oxidation of androst-4-en-3,17-dione(<u>1</u>) to 19-hydroxyandrost-4-en-3,17-dione(<u>2</u>), androst-4-en-3,17,19-trione(<u>3</u>) and estrone(<u>4</u>). These high-valent iron(IV)-oxo intermediates⁴ are also formed by the reaction of iron(III) porphyrins with different monoxygen donors and are responsible for the hydroxylation of hydrocarbons⁵, epoxidation of olefins⁶, oxidation of heteroatoms⁷ and the cleavage of C-C bonds⁸ in organic substrates. We report here the oxidation of <u>1</u> and other related androgens by cumene hydroperoxide(CumOOH)⁹, catalyzed by different chloro-iron(III)-5,10,15,20-tetraarylporphinates [TAPFe(III)C1]/N-methylimidazole-(N-MeIm) systems under different reaction conditions.

In a typical case, the oxidation of $\underline{1}$ by CumOOH catalyzed by Cl₈TPPFe-(III)Cl in dichloromethane gave $\underline{2}$ and $\underline{3}$ in 2.7 and 1.5% yields respectively. Further, the same oxidation when carried out in the presence of N-MeIm gave $\underline{2}$, $\underline{3}$, and $\underline{4}$ in 31.3, 15.7 and 32.1% yields respectively. The results of the oxidation of $\underline{1}$ with CumOOH catalyzed by different TAPFe(III)Cl/N-MeIm systems are given in the Table.

The different products were identified by comparing the R_f values¹⁰ and h.p.l.c. retention times with those of authentic samples (Table). In a

6223

typical example, <u>1</u> (200 mg, 0.7 mmol) was oxidized using the Cl_8 TPPFe(III)-Cl(7.0 mol)/N-MeIm(70.0 mol)/CumOOH(0.2 mmol) system and, after work-up, estrone was isolated by preparative t.l.c.¹⁰ in 5.8% yield (10 mg). The identity of the isolated estrone was confirmed by spectroscopic comparison¹¹.

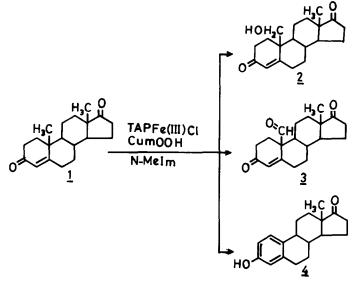


TABLE: OXIDATION PRODUCTS^a OF <u>1</u> WITH DIFFERENT IRON(III)PORPHYRINS/CumOOH SYSTEMS^b

S.No.	Catalyst	Substrate	Yield		
			2	3	4
1.	Cl _g TPPFe(III)Cl	<u>1</u>	2.7	1.5	-
2.	Cl ₈ TPPFe(III)Cl/N-MeIm	<u>1</u>	31.3	15.7	32.1
3.	TPPFe(III)Cl/N-MeIm	<u>1</u>	-	37.5	-
4.	Me ₁₂ TPPFe(III)Cl/N-MeIm	<u>1</u>	-	14.3	1.8
5.	Cl ₈ TPPFe(III)Cl/N-MeIm/CH ₃ OH	<u>1</u>	31.3	6.5	-
б.	Cl ₈ TPPFe(III)Cl/N-MeIm	<u>2</u>	-	4.3	52.5
7.	Cl ₈ TPPFe(III)Cl/N-MeIm	<u>3</u>	-	-	12.3

a: Relative yields estimated by h.p.l.c. H.p.l.c. conditions: Zorbax ODS column (reversed phase, 15 cm x 4 mm i.d.); acetonitrile solvent (0.4 ml/min.); UV detector (260 nm); retention times (min.): $\underline{1}$, 7.6; $\underline{2}$, 6.4; $\underline{3}$, 4.9 and $\underline{4}$, 5.7.

b: Reaction conditions: substrate (35 mol):porphyrin:CumOOH:N-MeIm in the ratio 100:1:25:10 and the reactions were carried out in dry dichloro-methane at 25°C for 12 h.

The reaction of TAPFe(III)Cl with CumOOH is slow and is accelerated in the presence of N-methylimidazole¹². Firstly, N-MeIm axially ligates to the iron atom by displacing the chloride. Secondly, it acts as an acid-base catalyst for the heterolytic cleavage of the 0-0 bond of the porphyrin-Fe-O-O-Cumyl molecule to form iron(IV)-oxo intermediates [TAPFe(IV)=O]^{13,14}. This [TAPFe(IV)=0] converts 1 to 2 either by a concerted pathway or by hydrogen abstraction from the 19-methyl group of $\underline{1}$ to form a 19-radical and [TAPFe(IV)OH], followed by an oxygen-rebound¹⁵ hydroxy radical transfer from [TAPFe(IV)OH] to give 2. The dehydrogenation of primary alcohols to is a known reaction of high-valent iron complexes¹⁶. aldehyde The iron(IV)-oxo intermediates formed by the CloTPPFe(III)Cl/N-MeIm system may be responsible for the conversion of $\underline{3}$ to $\underline{4}$. Recently, a similar oxidation of $\underline{3}$ to $\underline{4}$ using the F₂₀TPPFe(III)Cl/KO₂/18-crown-6 system in acetonitrile followed by acid treatment¹⁷, and the aromatization of some methyltetralones by using F20TPPFe(III)C1/C6H5IO in dichloromethane followed by acid treatment¹⁸, have been achieved. The aromatization of <u>1</u> has been observed only in dichloromethane. No aromatization was observed when the solvent contained small quantities of methanol or water. Thus, the present study indicates that the Cl_gTPPFe(III)Cl/N-MeIm/CumOOH system is a suitable model for microsomal cytochrome P-450 aromatase.

REFERENCES AND NOTES

- 1. D.W. Nebert and F.J. Gonzalez, Annu. Rev. Biochem., 56, 945.
- P.F. Hall, Steroids, 1986, <u>48</u>, 131.
- 3. R.E. White and M.J. Coon, Annu. Rev. Biochem., 1980, 40, 315.
- 4. R.H. Holm, Chem. Rev., 1987, 87, 1401.
- D. Mansuy, P. Battioni, and J.P. Battioni, Eur. J. Biochem., 1989, <u>184</u>, 267.
- 6. K.A. Jorgenson, Chem. Rev., 1989, 89, 431.
- 7. D. Mansuy, Pure Appl. Chem., 1987, 59, 759.
- 8. T. Mori, T. Santa and M. Hirobe, Tetrahedron Lett., 1985, 5555.
- 9. Abbreviations used: CumOOH: cumene hydroperoxide; N-MeIm: N-methylimidazole; TAP: 5,10,15,20-tetraarylporphin; TPP: 5,10,15,20-tetraphenylporphin; Me₁₂TPP: 5,10,15,20-tetra(2,4,6-trimethylphenyl)porphin; Cl₈TPP: 5,10,15,20-tetra(2,6-dichlorophenyl)prophin; F₂₀TPP: 5,10,15, 20-tetra(pentafluorophenyl)prophin.

- 10. T.1.c. conditions: silica gel plates (5 cm x 20 cm or 10 cm x 20 cm), 1 mm thickness; solvent system: petroleum ether(60-80°)-ethyl acetate (1:1); 0.5% vanillin in ethanol- H_2SO_4 (1:4) spraying agent; baking at 110°C for 10 min. 1(R=0.32):red, $2(R_f=0.20)$;grey, $3(R_f=0.28)$;red and $4(R_f=0.47)$: purple.
- 11. M.p. 246-249°C (lit.¹⁹ m.p. 249-253°); UV(methanol): 282.0 nm (mM, 2.4); [$]_D^{30}$:+160.0°(dixoan, 0.2); IR(nujol): 3350, 1710, 1620, 1580, 1280, 1240, 920, 880, 720 and 660 cm⁻¹; ¹H NMR(CDCl₃): 0.90(s, 3H, 18-CH₃), 1.45-2.90(m, 15H, skeletal-H), 4.70[s, 1H, 3-OH(exch.)], 6.58(d, J_{2,4}=3 Hz, 1H, 4-H), 6.64(dd, J_{1,2}=9 Hz & J_{2,4}=3 Hz, 1H, 2-H) and 7.15(d, J_{1,2}=9 Hz, 1H, 1-H); M.S.(EI, 70 eV) m/z(rel. int.): 271(M+1, 18.2), 270(M⁺, 100), 242(3.2), 214(10.2), 213(19.4), 199(4.8), 185(34.4), 172(27.4), 160(17.5) and 146(34.4).
- 12. L.-C. Yuan and T.C. Bruice, J. Amer. Chem. Soc., 1986, 108, 1643.
- 13. T.G. Traylor and F. Xu, J. Amer. Chem. Soc., 1990, 112, 8462.
- P. Battioni, J.P. Renaud, J.F. Bartoli, M. Reina-Artiles, M. Fort, and D. Mansuy, J. Amer. Chem. Soc., 1988, 110, 8462.
- 15. J.T. Groves and G.A. McClusky, J. Amer. Chem. Soc., 1976, <u>98</u>, 859.
- 16. J.T. Groves and T.E. Nemo, J. Amer. Chem. Soc., 1983, 105, 6243.
- 17. Y. Watanabe and Y. Ishimura, J. Amer. Chem. Soc., 1989, 111, 8047.
- 18. Y. Watanabe and Y. Ishimura, J. Amer. Chem. Soc., 1989, 111, 410.
- J. Das, R. Kubela, G.A. MacAlpine, Z. Stojanac, and Z. Valenta, Can. J. Chem., 1979, <u>57</u>, 3308.

ACKNOWLEDGEMENTS: A senior research fellowship to one of the authors (B.V.) by the University Grants Commission, New Delhi is gratefully acknowledged.

(Received in UK 23 July 1990)